INSTITUCIÓN EDUCATIVA COLEGIO CENTAUROS

Aprobación oficial no.0552 del 17 de septiembre del 2002 NIT 822.002014-4

Código DANE 150001004630

Vigencia: 2013

FR-1540-GD01

APOYO A LA GESTION ACADEMICA

Documento controlado Página 1 de 9

Docente: ANA SILVIA MATEUS REINA Área: Tecnología e informática

Grado: DÉCIMO Fecha: 01-02-2021 Sede: LA ROSITA

Estándar: Relaciono los conocimientos científicos y tecnológicos que se han empleado en diversas culturas y regiones del mundo a través de la historia para resolver problemas y transformar el entorno.

CRONOGRAMA DE ENTREGA DE **ACTIVIDADES**

ACTIVIDAD	FECHA MÁXIMA DE ENTREGA		
1	15 al 19 de febrero de 2021		
2	1 al 5 de marzo de 2021		
3	15 al 19 de marzo de 2021		
4	5 al 9 de abril de 2021		
Finalización del I periodo 16 de abril de 2021			

TEMA 1. HISTORIA DE LA ELECTRICIDAD

Mucha gente se pregunta... ¿Quién inventó la Electricidad? La electricidad es una forma de energía y se produce en la naturaleza, por lo que "No fue Inventada".

La electricidad, como otros muchos fenómenos, Se Descubrió y poco a poco se fueron ampliando y mejorando los conocimientos sobre ella para el uso práctico por el ser humano.

En cuanto a quien lo descubrió, abundan muchos conceptos erróneos.

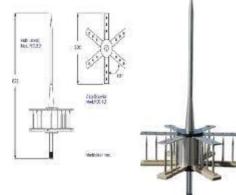
Algunas personas dan por cierto que el descubridor de la electricidad fue Benjamín Franklin por sus experimentos con una cometa y posterior invento del pararrayos, pero esto sólo ayudó a establecer la conexión entre el rayo y la electricidad, nada más. La humanidad tenía que conocer la primera carga eléctrica para descubrir verdaderamente la electricidad.

La verdad sobre el descubrimiento de la electricidad es un poco más compleja que un hombre haciendo volar su cometa. En realidad, se remonta a más de dos mil años y se podría hablar mejor que del descubrimiento, de la "historia de la electricidad".

Ver los siguientes videos, si tiene la posibilidad https://youtu.be/1DyRthtZ 7A https://youtu.be/xRbvwaCKX30 https://youtu.be/nWkxgb5I9Tk

SU HISTORIA...

Thales de Miletus (630-550 AC) fue el primero, que cerca del 600 AC, conociera el hecho de que el ámbar, al ser frotado adquiere el poder de atracción sobre algunos objetos.


Sin embargo, fue el filósofo Griego Theophrastus (374-287 AC) el primero, que en un tratado escrito tres siglos después, estableció que otras sustancias tienen este mismo poder, dejando así constancia del primer estudio científico sobre la electricidad.

En 1600, la Reina Elizabeth I ordena al Físico Real Willian Gilbert (1544-1603) estudiar los imanes para mejorar la exactitud de las Brújulas usadas en la navegación, siendo éste trabajo la base principal para la definición de los fundamentos de la Electrostática y Magnetismo.

Gilbert fue el primero en aplicar el término Electricidad del Griego "elektron" = ámbar.

Gilbert es la unidad de medida de la fuerza magnetomotriz.

En 1752, Benjamín Franklin (1706 - 1790)demostró la naturaleza eléctrica de los rayos.

Desarrolló la teoría de que la

electricidad es un fluido que existe en la materia y su flujo se debe al exceso o defecto del mismo en ella. Invento el pararrayos.

En 1780 inventa **lentes** los Bifocales.

En 1776, Charles Agustín de Coulomb (1736-1806)inventó la balanza de torsión con la cual. midió con exactitud la fuerza

INSTITUCIÓN EDUCATIVA COLEGIO CENTAUROS

Aprobación oficial no.0552 del 17 de septiembre del 2002 NIT 822.002014-4 Código DANE 150001004630 Vigencia: 2013

FR-1540-GD01

ED CA

APOYO A LA GESTION ACADEMICA

Documento controlado

Página 2 de 9

entre las cargas eléctricas y corroboró que dicha fuerza era proporcional al producto de las cargas individuales e inversamente proporcional al cuadrado de la distancia que las separa. Coulomb es la unidad de medida de Carga eléctrica.

En 1800, Alejandro Volta (1745–1827) construye la primera celda Electrostática y la batería capaz de producir corriente eléctrica. Su inspiración le vino del estudio realizado por el Físico Italiano Luigi Galvani (1737–1798) sobre las corrientes nerviosas-eléctricas en las ancas de ranas.

Galvani propuso la teoría de la Electricidad Animal, lo cual contrarió a Volta, quien creía que las contracciones musculares eran el resultado del contacto de los dos metales con el músculo.

Sus investigaciones posteriores le permitieron elaborar una celda química capaz de producir corriente continua, fue así como desarrollo la Pila.

Volt es la unidad de medida del potencial eléctrico (Tensión).

Desde 1801 a 1815, Sir Humphry Davy (1778–1829) desarrolla la electroquímica (nombre asignado por él mismo), explorando el uso de la pila de Volta o batería, y tratando de entender como ésta funciona.

En 1801 observa el arco eléctrico y la incandescencia en un conductor energizado con una batería.

Entre 1806 y 1808 publica el resultado de sus investigaciones sobre la electrólisis, donde logra la separación del Magnesio, Bario, Estroncio, Calcio, Sodio, Potasio y Boro.

En 1807 fabrica una pila con más de 2000 placas doble, con la cual descubre el Cloro y demuestra que es un elemento, en vez de un ácido.

En 1815 inventa la lámpara de seguridad para los mineros.

Sin ningún lugar a duda, el descubrimiento más importante lo realiza ese mismo año, cuando descubre al joven Michael Faraday y lo toma como asistente.

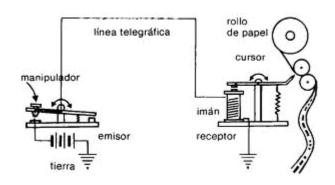
En 1819, El científico Danés Hans Christian Oersted (1777-1851) descubre el electromagnetismo, cuando en un experimento para sus estudiantes, la aguja de la brújula colocada accidentalmente cerca de un cable energizado por una pila voltaica, se movió. Este

descubrimiento fue crucial en el desarrollo de la Electricidad, ya que puso en evidencia la relación existente entre la electricidad y el magnetismo.

En 1823, Andre-Marie Ampere (1775-1836) establece los principios de la electrodinámica, cuando llega a la conclusión de que la Fuerza Electromotriz es producto de dos efectos: La tensión eléctrica y la corriente eléctrica. Experimenta con conductores, determinando que estos se atraen si las corrientes fluyen en la misma dirección, y se repelen cuando fluyen en contra.

Ampere es la unidad de medida de la corriente eléctrica.

En 1826, El físico Alemán Georg Simon Ohm (1789–1854) fue quien formuló con exactitud la ley de las corrientes eléctricas, definiendo la relación exacta entre la tensión y la corriente. Desde entonces, esta ley se conoce como la ley de Ohm.


Ohm es la unidad de medida de la Resistencia Eléctrica.

R = V / I Ohm = Volt / Amper

En 1831, Michael Faraday (1791–1867) a los 14 años trabajaba como encuadernador, lo cual le permitió tener el tiempo necesario para leer y desarrollar su interés por la Física y Química. A pesar de su baja preparación formal, dio un paso fundamental en el desarrollo de la electricidad al establecer que el magnetismo produce electricidad a través del movimiento.

Faradio es la unidad de medida de la Capacitancia Eléctrica.

La tensión inducida en la bobina que se mueve en campo magnético no uniforme fue demostrada por Faraday.

En 1835, Simule F.B. Morse (1791–1867), mientras regresaba de uno de sus viajes, concibe

INSTITUCIÓN EDUCATIVA COLEGIO CENTAUROS

Aprobación oficial no.0552 del 17 de septiembre del 2002 NIT 822.002014-4 Código DANE 150001004630 Vigencia: 2013

FR-1540-GD01

APOYO A LA GESTION ACADEMICA

Documento controlado

Página 3 de 9

la idea de un simple circuito electromagnético para transmitir información, El Telégrafo.

En 1835 construye el primer telégrafo.

En 1837 se asocia con Henry y Vail con el fin de obtener financiamiento del Congreso de USA para su desarrollo, fracasa el intento, prosigue solo, obteniendo el éxito en 1843, cuando el congreso le aprueba el desarrollo de una línea de 41 millas desde Baltimor hasta el Capitolio en Washington D.C. La cual construye en 1844.

En 1840-42, James Prescott Joule (1818-1889) Físico Inglés, quien descubrió la equivalencia entre trabajo mecánico y la caloría, y el científico Alemán Hermann Ludwig Ferdinand Helmholtz (1821-1894), quien definió la primera ley de la termodinámica demostraron que los circuitos eléctricos cumplían con la ley de la conservación de la energía y que la Electricidad era una forma de Energía.

Adicionalmente, Joule inventó la soldadura eléctrica de arco y demostró que el calor generado por la corriente eléctrica era proporcional al cuadrado de la corriente.

Joule es la unidad de medida de Energía.

En 1845, Gustav Robert Kirchhoff (1824–1887) Físico Alemán a los 21 años de edad, anunció las leyes que permiten calcular las corrientes, y tensiones en redes eléctricas. Conocidas como Leyes de Kirchhoff I y II.

Estableció las técnicas para el análisis espectral, con la cual determinó la composición del sol.

En 1854, El matemático Inglés William Thomson (Lord Kelvin) (1824–1907, con su trabajo sobre el análisis teórico sobre transmisión por cable, hizo posible el desarrollo del cable transatlántico.

En 1851 definió la Segunda Ley de la Termodinámica.

En 1858 Inventó el cable flexible.

Kelvin es la unidad de medida de temperatura absoluta.

En 1870, James Clerk Maxwell (1831–1879) Matemático Inglés formuló las cuatro ecuaciones que sirven de fundamento de la teoría Electromagnética. Dedujo que la Luz es una onda electromagnética, y que la energía se transmite

por ondas electromagnéticas a la velocidad de la Luz Maxwell es la unidad del flujo Magnético.

En 1879, el Físico Inglés Joseph John Thomson (1856–1940) demostró que los rayos catódicos estaban constituidos de partículas atómicas de carga negativas la cual el llamó "Corpúsculos" y hoy en día los conocemos como Electrones.

En 1881, Thomas Alva Edison (1847–1931) produce la primera Lámpara Incandescente con un filamento de algodón carbonizado. Este filamento permaneció encendido por 44 horas.

En 1881 desarrolló el filamento de bambú con 1.7 lúmenes por vatios. En 1904 el filamento de tungsteno con una eficiencia de 7.9 lúmenes por vatios. En 1910 la lámpara de 100 w con rendimiento de 10 lúmenes por vatios.

Hoy en día, las lámparas incandescentes de filamento de tungsteno de 100 w tienen un rendimiento del orden de 18 lúmenes por vatios. En 1882 Edison instaló el primer sistema eléctrico para vender energía para la iluminación incandescente, en los Estados Unidos para la estación Pearl Street de la ciudad de New York.

El sistema fue en CD tres hilos, 220-110 v con una potencia total de 30 kw.

En 1884, Heinrich Rudolf Hertz (1847–1894) demostró la validez de las ecuaciones de Maxwell y las reescribió, en la forma que hoy en día es conocida.

En 1888 Hertz recibió el reconocimiento por sus trabajos sobre las Ondas Electromagnéticas: propagación, polarización y reflexión de ondas.

Con Hertz se abre la puerta para el desarrollo de la radio.

Hertz es la unidad de medida de la frecuencia.

INSTITUCIÓN EDUCATIVA COLEGIO CENTAUROS

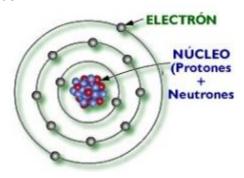
Aprobación oficial no.0552 del 17 de septiembre del 2002 NIT 822.002014-4 Código DANE 150001004630 Vigencia: 2013

FR-1540-GD01

APOYO A LA GESTION ACADEMICA

Documento controlado
Página 4 de 9

ACTIVIDAD 1 – HISTORIA DE LA ELECTRICIDAD

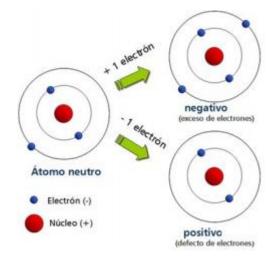

- 1. Realizar una línea del tiempo (con mínimo 20 fechas) en el cuaderno sobre la historia de la electricidad teniendo en cuenta el texto anterior. Datos que deben estar en la línea del tiempo:
 - Fecha
 - Invento
 - Inventor
 - Desarrollo

TEMA 2. CORRIENTE ELÉCTRICA

CONCEPTOS BÁSICOS

CARGA ELÉCTRICA

Para poder entender los fenómenos eléctricos debemos conocer cómo está constituida la materia. La materia está formada por partículas muy pequeñas llamadas átomos, que vendría a ser la unidad básica y más pequeña de la materia. A su vez, los átomos están constituidos por electrones que se mueven alrededor de un núcleo, constituido por protones y neutrones. Los protones y los electrones tienen una propiedad conocida como carga eléctrica. Esta propiedad es la responsable de que ocurran los fenómenos eléctricos.

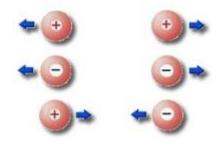

Mientras que los neutrones no poseen carga eléctrica, la carga de un electrón es igual a la carga eléctrica de un protón, pero de distinto signo:

Los **electrones** tienen carga negativa. Los **protones** poseen carga positiva.

Los responsables de todos los fenómenos eléctricos son los electrones, porque pueden escapar de la órbita del átomo y son mucho más ligeros que las otras partículas.

En general, los materiales son neutros; es decir, el material contiene el mismo número de cargas negativas (electrones) y positivas (protones). Sin

embargo, en ciertas ocasiones los electrones pueden moverse de un material a otro originando cuerpos con cargas positivas (con defecto de electrones) y cuerpos con carga negativa (con exceso de electrones), pudiendo actuar sobre otros cuerpos que también están cargados. Por tanto, para adquirir carga eléctrica, es decir, para electrizarse, los cuerpos tienen que ganar o perder electrones.



En resumen,

Si un cuerpo está cargado negativamente es porque ha ganado electrones. Tiene un exceso de electrones.

Si un cuerpo está cargado positivamente es porque ha perdido electrones. Tiene un defecto de electrones.

Una característica de las cargas, es que las cargas del mismo signo se repelen, mientras que las cargas con diferente signo se atraen (tal y como muestra la figura).

Si frotamos un bolígrafo con tela de lana, veremos que este es capaz de atraer pequeños trozos de papel. Decimos que el bolígrafo se ha electrizado.

Si conecto un cuerpo cargado negativamente con otro cargado positivamente con un cable conductor, las cargas negativas recorren el conductor desde el cuerpo negativo al positivo.

Una vez conectados, los electrones en exceso de uno, serán atraídos a través del hilo conductor

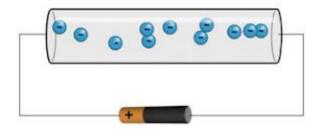
INSTITUCIÓN EDUCATIVA COLEGIO CENTAUROS

Aprobación oficial no.0552 del 17 de septiembre del 2002 NIT 822.002014-4

Código DANE 150001004630

Vigencia: 2013

FR-1540-GD01

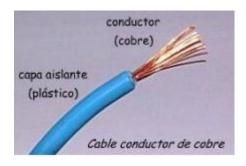

APOYO A LA GESTION ACADEMICA

Documento controlado

Página 5 de 9

(que permite el paso de electrones) hacia el elemento que tiene un defecto de electrones, hasta que las cargas eléctricas de los dos cuerpos se equilibren.

Cuando un cuerpo está cargado negativamente y el otro está cargado positivamente, se dice que entre ellos hay una DIFERENCIA DE CARGAS, pero este concepto se conoce más como TENSIÓN ELÉCTRICA, **DIFERENCIA** POTENCIAL O VOLTAJE. Para alcanzar el equilibrio los electrones que hay en exceso en uno de los extremos comienzan a moverse hacia el otro extremo. Este movimiento de electrones es la corriente eléctrica.



Esta diferencia de cargas la podemos encontrar en una pila, que tiene dos puntos con diferencias de cargas (el polo positivo y el polo negativo).

Si conectamos un cable conductor entre los polos, se establecerá una corriente eléctrica. Cuanto mayor sea la tensión eléctrica (en Voltios), con más fuerza recorrerán los electrones el conductor. Por eso, se suele definir la tensión eléctrica como la fuerza con la que circulan los electrones desde un punto hasta otro.

Por tanto, si no hay tensión entre dos puntos no habrá corriente eléctrica.

Un material conductor es aquel que permite el paso de la corriente eléctrica, como son el cobre o el aluminio, mientras que un material aislante no permite el paso de la corriente eléctrica, como lo son el plástico o la madera.

Hay otro concepto que no hay que confundir con el de tensión: se trata de la intensidad de la corriente eléctrica.

Un cable puede llevar más o menos corriente, y eso se sabe conociendo la intensidad de la corriente eléctrica, es decir, la cantidad de electrones que circulan por un cable conductor cada segundo.

Cuanto mayor sea el número de electrones que pase por el cable cada segundo, mayor será la intensidad de la corriente.

La intensidad de la corriente se representa con la letra I, y se mide en Amperios (A).

En cualquier conductor las cargas encuentran una oposición o resistencia a su movimiento. Las cargas, es decir, los electrones, "tropiezan" con los átomos del cable conductor y les cuesta avanzar.

materiales eso, hay unos conductores que otros. Por ejemplo: el cobre es un excelente conductor eléctrico, porque ofrece una baja resistencia al paso de la corriente eléctrica y en cambio el plomo, aunque conduce la corriente, es un mal conductor, porque tiene una resistencia más alta al paso de la corriente eléctrica.

Por eso, se define la resistencia eléctrica de un material a la oposición que ofrece un material al paso de la corriente eléctrica.

La resistencia eléctrica se representa con la letra R, y se mide en Ohmios (Ω)

EFECTOS DE LA CORRIENTE ELÉCTRICA

Los efectos de la corriente eléctrica son los siguientes:

Efecto calórico (Efecto Joule), se produce cuando la corriente eléctrica circula por un cable o resistencia y este se calienta.

Efecto luminoso, se produce en bombillas, pantallas, televisores, etc

Efecto sonoro, se produce cuando la corriente eléctrica se transforma en sonidos altavoces.

Efecto magnético, se produce cuando una barra de hierro, al tener enrollado un trozo de cable de cobre, actúa como un imán.

Efecto mecánico, se produce cuando los motores eléctricos aprovechan la corriente eléctrica para producir un movimiento giratorio.

ALCALDÍA DE VILLAVICENCIO FR-1540-GD01

INSTITUCION EDUCATIVA COLEGIO CENTAUROS

Aprobación oficial no.0552 del 17 de septiembre del 2002 NIT 822.002014-4

Código DANE 150001004630

Vigencia: 2013

APOYO A LA GESTION ACADEMICA

ACTIVIDAD 2 – CORRIENTE ELECTRICA

- A. En el cuaderno realice un mapa conceptual sobre la corriente eléctrica.
- B. Resuelva cada una de las siguientes preguntas en su cuaderno:
- 1. ¿Qué es átomo?
- 2. ¿Cómo están constituidos los átomos?
- 3. Dibuje como es el átomo
- 4. ¿A qué se deben los fenómenos eléctricos?
- 5. ¿Como se distribuye la carga eléctrica en los átomos?
- 6. ¿Quiénes son los responsables de los fenómenos eléctricos? ¿Por qué?
- 7. ¿Cómo es el proceso para "energizar" cuerpos? Dibuje un esquema
- Si un cuerpo está cargado positivamente. ¿Qué pasa?
- 9. Si un cuerpo está cargado negativamente. ¿Qué pasa?
- 10. ¿Qué es corriente eléctrica?
- 11. ¿Qué es tensión eléctrica?
- 12. ¿Qué es la intensidad de corriente? ¿En qué unidades se mide?
- 13. ¿Qué es la resistencia eléctrica? ¿En qué unidades se mide?
- 14. Si un material tiene una resistencia eléctrica baja. ¿es un mal o un buen conductor de la corriente? Indica un ejemplo.
- 15. Completa la siguiente tabla relativa al átomo.

Partículas del átomo	¿En qué parte del átomo se encuentre?	Tipo de carga
Electrón		
		Positiva
	En el núcleo del átomo	

16. Relaciona mediante flechas los términos de las siguientes columnas:

a) Intensidad de la corriente 1. Cantidad de electrones que circula por un punto determinado de un circuito cada segundo

b) Resistencia

Fuerza con que se mueven los electrones entre dos puntos de un

circuito.

3. Oposición que ofrecen los elementos c) Tensión del circuito al paso de corriente.

4. Movimiento de electrones a través de d) Corriente eléctrica un material conductor

17. Completa la siguiente tabla que relaciona magnitudes y unidades eléctricas

Magnitud eléctrica	Letra con que se representa	Unidad de medida	Letra que representa la unidad
Voltaje			
Intensidad			
Resistencia			

TEMA 3. CIRCUITO ELECTRICO

Documento controlado

Página 6 de 9

Ver el siguiente enlace, si es posible http://recursostic.educacion.es/eda/web/tic 2 0/informes/p erez freire carlos/index.htm

DEFINICIÓN

Se define la corriente eléctrica como el paso ordenado de los electrones a través de un conductor.

TIPOS DE CORRIENTE ELÉCTRICA

Según la forma en la que se ha generado, la corriente eléctrica puede ser de dos tipos:

Continua: Los electrones se mueven en un mismo sentido (del polo negativo al polo positivo). Es generada por pilas o baterías (transformación de energía química en eléctrica) o por células fotovoltaicas (transformación de energía radiante en eléctrica). Los voltajes suelen ser bajos: 1.5 v, 4.5 v, 9v,... Uso mas común: linternas, móviles,...

Alterna: Los electrones cambian el sentido del movimiento. Es generada mediante un alternador (transformación de energía mecánica eléctrica). Su producción tiene lugar en las centrales eléctricas (térmicas, eólicas,...). Es la más utilizada. Los voltajes obtenidos son elevados. Es la que utilizamos en casa: televisión, iluminación, lavadora,... (230v)

CIRCUITO ELÉCTRICO

Para aprovechar la energía eléctrica, construye un circuito eléctrico, que se define como el conjunto de elementos que, conectados entre si permiten el paso de la energía eléctrica y la transforman en otro tipo de energía (mecánica, los motores; radiante, las bombillas,...).

Los elementos que constituyen un circuito eléctrico se clasifican en cuatro grupos:

Generadores: Producen la corriente eléctrica: Pilas, baterías,...

Conductores: Permiten el paso de la corriente eléctrica y unen los distintos elementos del circuito: cables.

Receptores: Reciben la energía eléctrica y la transforman en otro tipo de energía: bombillas, motores, zumbadores,...

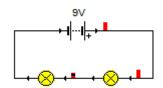
Elementos de maniobra, control y protección: Permiten modificar las condiciones del circuito (interruptores,...) y/o lo protegen (fusibles).

INSTITUCIÓN EDUCATIVA COLEGIO CENTAUROS

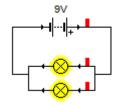
Aprobación oficial no.0552 del 17 de septiembre del 2002 NIT 822.002014-4 Código DANE 150001004630 Vigencia: 2013

FR-1540-GD01

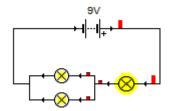
INSTITUCION SOUNAL PLANTS OF THE PLANTS OF T


APOYO A LA GESTION ACADEMICA

Documento controlado
Página 7 de 9


TIPOS DE CIRCUITOS

Según la forma en la que estén conectados los distintos elementos dentro de un circuito, estos pueden ser de tres tipos diferentes:


Serie: Los elementos están conectados uno a continuación del otro, "unidos por el mismo cable". Se caracterizan porque la intensidad de corriente es la misma para todos los elementos del circuito.

Paralelo: Los elementos están conectados en diferentes "niveles". Se caracterizan porque la tensión es la misma para todos los elementos del circuito.

Mixto: Es la combinación de los circuitos anteriores, es decir, tenemos elementos en serie y en paralelo.

Ver simbología en este enlace, si es posible http://www.ieslosalbares.es/tecnologia/Electricidad/simbologa_esquemas.html

MAGNITUDES ELÉCTRICAS

Se define una magnitud como aquello que se puede medir; masa, velocidad, tiempo, ... En electricidad, vamos a trabajar con 5 magnitudes básicas:

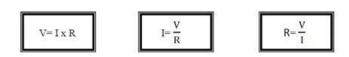
Tensión o voltaje (V): Es la energía suministrada a cada electrón. Se mide en voltios (V).

Intensidad de corriente (I): Cantidad de electrones que recorren el circuito eléctrico en la unidad de tiempo.

Resistencia (R): Oposición que presentan los materiales al paso de la corriente eléctrica. Se mide en ohmios (Ω) .

Potencia (P): Energía consumida o absorbida en la unidad de tiempo. Se mide en vatios (w).

Energía eléctrica (E): Forma de energía que resulta de la existencia de una diferencia de potencial entre dos puntos, lo que permite establecer una corriente eléctrica entre ambos, para obtener trabajo. Se mide en kilovatio hora (Kwh)


LEY DE OHM

Las tres primeras magnitudes, magnitudes fundamentales, se relacionan entre si por medio de la "Ley de Ohm", que dice que conocidas dos magnitudes, podemos calcular la tercera.

TRIÁNGULO DE MAGNITUDES

A partir del triangulo anterior, podemos obtener las tres expresiones de la ley según la magnitud que queramos calcular. Para ello, tapamos la magnitud desconocida y escribimos la expresión matemática que queda como resultado de las otras dos:

Cálculo de potencia y energía

Como vimos en el apartado de las definiciones, las magnitudes potencia y energía están relacionadas. Las expresiones matemáticas para estas magnitudes son las siguientes:

Energía

$$E = P \times t$$

dónde P es la potencia y t es el tiempo

INSTITUCIÓN EDUCATIVA COLEGIO CENTAUROS

Aprobación oficial no.0552 del 17 de septiembre del 2002 NIT 822.002014-4 Código DANE 150001004630 Vigencia: 2013

FR-1540-GD01

APOYO A LA GESTION ACADEMICA

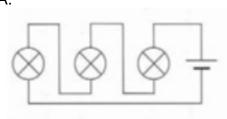
Documento controlado

Página 8 de 9

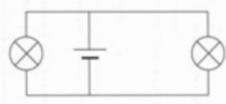
Potencia

P = E/t

También podemos expresar la potencia en función de la intensidad y de la resistencia o de la tensión y la intensidad.


 $P = I \times R^2$ $P = I \times V$

ACTIVIDAD 3 – CIRCUITO ELECTRICO


Resuelva cada una de las siguientes preguntas en su cuaderno:

- 1. ¿En que consiste la LEY DE OHM?
- 2. ¿Cuáles son las fórmulas para hallar la Intensidad eléctrica, Voltaje e Intensidad?
- 3. Resolver los siguientes problemas:
 - A. Calcular la resistencia en un circuito, con una tensión de 110 V y una intensidad de corriente de 0.25A.
 - B. Calcular la intensidad de corriente que consume un receptor de 1500 Ω de resistencia, si lo conectamos a 220V.
 - C. Calcular que tensión necesitamos para alimentar un equipo de música de 2250 Ω de resistencia, si consume una intensidad de corriente de 0.15 A.
 - D. Calcular la resistencia eléctrica de un ordenador, que consume 0.12 A cuando lo conectamos a una fuente de tensión de 24 V.
- 4. ¿Cuáles de estos montajes están en serie y cuales en paralelo?

В.

C.

- 5. ¿Cómo crees que están conectadas las tomas de corriente y los puntos de luz de una vivienda, en serie o en paralelo? ¿Qué pasa si se funde una bombilla en la vivienda?
- 6. Dibuja el circuito de una habitación en la que tenemos una lámpara con dos bombillas que se encienden a la vez, un ventilador y una estufa. ¿Cómo están conectados los elementos en serie o en paralelo?
- 7. Señala si las siguientes afirmaciones son verdaderas o falsas:
 - a. La resistencia se mide en amperios.
 - b. Una bombilla transforma la energía eléctrica solo en luminosa.
 - c. La expresión matemática de la ley de Ohm es V= I x R
- 8. Dibuja un circuito de modo que:
 - a. Con un interruptor encendamos y apaguemos dos bombillas a la vez.
 - b. Con un interruptor encendamos una bombilla.

TEMA 4. MONTAJES ELECTRICOS

MATERIALES Y HERRAMIENTAS

2 pilas AA

2 porta pilas

2 mts Cable para circuitos

2 interruptores

CIRCUITOS ELEMENTALES

Construye los siguientes circuitos y contesta a las preguntas que se formulan

- 1. Circuito simple
- a. Dibuja el esquema del circuito

- b. ¿Qué sucede cuando enroscamos la bombilla en el portalámparas?
- c. ¿y si la aflojamos?
- d. ¿Qué pasa si conectamos al revés la pila? (invertimos la conexión)
- 2. Circuito con interruptor
 - a. Dibuja el esquema del circuito

INSTITUCIÓN EDUCATIVA COLEGIO CENTAUROS

Aprobación oficial no.0552 del 17 de septiembre del 2002 NIT 822.002014-4 Código DANE 150001004630 Vigencia: 2013

FR-1540-GD01

APOYO A LA GESTION ACADEMICA

Documento controlado

Página 9 de 9

- a. ¿Qué sucede si cerramos el interruptor?
- b. ¿y si lo abrimos?
- c. ¿Cuántos voltios se ha aplicado a la bombilla?

CIRCUITOS EN SERIE

Cuando conectamos dos o más lámparas (también llamadas bombillas) de forma que el final de la primera esté unido con el principio de la siguiente, decimos que el montaje realizado está EN SERIE.

- 1. Bombillas en serie
 - a. Dibuja el esquema del circuito

- b. ¿Iluminan las dos bombillas: tanto como iluminaba una, más, ¿o menos?
- c. ¿Qué sucede si aflojamos una de las bombillas?
- d. ¿Y si aflojamos las dos?

CIRCUITO EN SERIE CON INTERRUPTOR

a. Monta el siguiente circuito y dibuja aquí el esquema eléctrico:

- b. Si cerramos el interruptor ¿Qué bombilla se enciende?
- c. ¿lluminan las dos bombillas: tanto como iluminaba una, más, ¿o menos?

d. ¿Y si lo abrimos?

CIRCUITOS EN PARALELO

Cuando conectamos dos o más lámparas de forma que todas estén unidas con cables por el principio y también se unan mediante cables por el final, entonces decimos que el montaje realizado está EN PARALELO.

- 1. Circuito en paralelo con interruptor.
- a. Monta el siguiente circuito y dibuja el esquema eléctrico:

- b. ¿Qué sucede si accionamos el interruptor?
- c. ¿lluminan las dos bombillas: tanto como iluminaba una, más, ¿o menos?
- d. ¿Qué sucede si aflojamos una de las bombillas?
- e. ¿Y si aflojamos las dos?

ACTIVIDAD 4 - MONTAJES ELECTRICOS

Realizar todo el tema MONTAJES ELECTRICOS en un documento de WORD e ir contestando las preguntas y tomando fotos de las evidencias de los montajes en cada una de las preguntas. Se pueden organizar grupos de 2 personas.